-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
203 lines (143 loc) · 6.22 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
message = FALSE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
fig.width = 12,
fig.height = 9,
dev = "ragg_png"
)
```
# d6geodata <img src='man/figures/hexlogo.png' align="right" height="151.5" /></a>
<!-- badges: start -->
<!-- badges: end -->
> The `d6geodata` package aims to provide spatial data for the 'Ecological Dynamics' Department of the IZW. The data sets are seperated in raw and processed data from different geographical regions like Germany and Berlin. Two main functions for accessing the data from the PopDynCloud and three plotting functions to visualize the raster data. Several additional functions are included but meant for the Geodatamanager to provide the datasets.
<br>
#
<br>
## Installation
You can install the `d6geodata` package from GitHub:
```{r install, eval=FALSE}
install.packages("devtools")
devtools::install_github("EcoDynIZW/d6geodata")
```
(Note: If you are asked if you want to update other packages either press "No" (option 3) and continue or update the packages before running the install command again.)
Afterwards, load the functionality and data of the package in each session:
```{r library}
library(d6geodata)
```
<br>
# Accessing Geodata
If you want to get geodata we already have in our Geodata archive you have two options: go on the EcoDyn Website, click on wikis and select [Geodata](https://ecodynizw.github.io/geodata.html). There you'll find several raster layers and vector data with plots and metadata. In the metadata section, you'll find the folder_name. You can copy this and use this together with `get_geodata()` function to get the data from our PopDynCloud. Another option is the function called `geo_overview()`. There you can select which data and from which location you want to have a list of data.
If you run the function `geo_overview` you have to decide if you want to see the raw or processed data by typing 1 for raw and 2 for processed data. Afterwards, you have to decide if you want to see the main (type 1) folders (the regions or sub-regions we have data from) or the sub (type 2) folders (the actually data we have in each region).
<br>
#### Example 1: main folder
```{r example geo_overview, eval=FALSE}
d6geodata::geo_overview(path_to_cloud = "E:/PopDynCloud")
Raw or processed data:
1: raw
2: processed
Auswahl: 2
choose folder type:
1: main
2: sub
Auswahl: 1
[1] "atlas" "BB_MV_B" "berlin" "europe" "germany" "world"
```
#### Example 2: sub folder
```{r example geo_overview two, eval=FALSE}
d6geodata::geo_overview(path_to_cloud = "E:/PopDynCloud")
Raw or processed data:
1: raw
2: processed
Auswahl: 2
choose folder type:
1: main
2: sub
Auswahl: 2
$atlas
[1] "distance-to-human-settlements_atlas_2009_1m_03035_tif"
[2] "distance-to-kettleholes_atlas_2022_1m_03035_tif"
[3] "distance-to-rivers_atlas_2009_1m_03035_tif"
[4] "distance-to-streets_atlas_2022_1m_03035_tif"
[5] "landuse_atlas_2009_1m_03035_tif"
$BB_MV_B
[1] "_archive" "_old_not_verified" "dist_path_bb_agroscapelabs"
[4] "scripts"
$berlin
[1] "_old_not_verified"
[2] "corine_berlin_2015_20m_03035_tif"
[3] "distance-to-paths_berlin_2022_100m_03035_tif"
[4] "green-capacity_berlin_2020_10m_03035_tif"
[5] "imperviousness_berlin_2018_10m_03035_tif"
[6] "light-pollution_berlin_2021_100m_03035_tif"
[7] "light-pollution_berlin_2021_10m_03035_tif"
[8] "motorways_berlin_2022_100m_03035_tif"
[9] "noise-day-night_berlin_2017_10m_03035_tif"
[10] "population-density_berlin_2019_10m_03035_tif"
[11] "template-raster_berlin_2018_10m_03035_tif"
[12] "tree-cover-density_berlin_2018_10m_03035_tif"
$europe
[1] "imperviousness_europe_2018_10m_03035_tif"
$germany
[1] "_old_not_verified"
[2] "distance-to-motorway-rural-road_germany_2022_100m_03035_tif"
[3] "distance-to-motorways_germany_2022_100m_03035_tif"
[4] "distance-to-paths_germany_2022_100m_03035_tif"
[5] "distance-to-roads-paths_germany_2022_100m_03035_tif"
[6] "distance-to-roads_germany_2022_100m_03035_tif"
[7] "distance_to_paths_germany_2022_100m_03035_tif"
[8] "motoroways_germany_2022_03035_osm_tif"
[9] "motorway-rural-road_germany_2022_100m_03035_tif"
[10] "motorways_germany_2022_100m_03035_tif"
[11] "paths_germany_2022_100m_03035_tif"
[12] "Roads-germany_2022_100m_03035_tif"
[13] "roads_germany_2022_100m_03035_tif"
[14] "tree-cover-density_germany_2015_100m_03035_tif"
$world
character(0)
```
Now you can copy the name of one of the layers and paste it into the get_geodata function
```{r example get_geodata}
corine <-
d6geodata::get_geodata(
data_name = "corine_berlin_2015_20m_03035_tif",
path_to_cloud = "E:/PopDynCloud",
download_data = FALSE
)
```
If you set download_data = TRUE the data will be download and copied to your data-raw folder. If the data-raw folder doesn't exist, it will create one.
# Plotting functions
The three functions `plot_binary_map()`, `plot_qualitative_map()` and plot `plot_quantitative_map()` can be used to plot raster data with the respective color sceams we used for the Geodata wiki page, but for raster data only!
```{r plotting functions, eval=FALSE}
plot_binary_map(tif = tif)
plot_qualitative_map(tif = tif)
plot_quantitative_map(tif = tif)
```
#### Example plot
```{r}
library(d6geodata)
plot_qualitative_map(tif = corine)
```
<br>
#
<details><summary>Session Info</summary>
```{r sessionInfo}
Sys.time()
git2r::repository()
sessionInfo()
```
</details>
-----
<br>
#### Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
<div style="width:300px; height:200px">
<img src=https://camo.githubusercontent.com/00f7814990f36f84c5ea74cba887385d8a2f36be/68747470733a2f2f646f63732e636c6f7564706f7373652e636f6d2f696d616765732f63632d62792d6e632d73612e706e67 alt="" height="42">
</div>