forked from chenyuntc/pytorch-best-practice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
171 lines (138 loc) · 5.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#coding:utf8
from config import opt
import os
import torch as t
import models
from data.dataset import DogCat
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torchnet import meter
from utils.visualize import Visualizer
from tqdm import tqdm
def test(**kwargs):
opt.parse(kwargs)
import ipdb;
ipdb.set_trace()
# configure model
model = getattr(models, opt.model)().eval()
if opt.load_model_path:
model.load(opt.load_model_path)
if opt.use_gpu: model.cuda()
# data
train_data = DogCat(opt.test_data_root,test=True)
test_dataloader = DataLoader(train_data,batch_size=opt.batch_size,shuffle=False,num_workers=opt.num_workers)
results = []
for ii,(data,path) in enumerate(test_dataloader):
input = t.autograd.Variable(data,volatile = True)
if opt.use_gpu: input = input.cuda()
score = model(input)
probability = t.nn.functional.softmax(score)[:,0].data.tolist()
# label = score.max(dim = 1)[1].data.tolist()
batch_results = [(path_,probability_) for path_,probability_ in zip(path,probability) ]
results += batch_results
write_csv(results,opt.result_file)
return results
def write_csv(results,file_name):
import csv
with open(file_name,'w') as f:
writer = csv.writer(f)
writer.writerow(['id','label'])
writer.writerows(results)
def train(**kwargs):
opt.parse(kwargs)
vis = Visualizer(opt.env)
# step1: configure model
model = getattr(models, opt.model)()
if opt.load_model_path:
model.load(opt.load_model_path)
if opt.use_gpu: model.cuda()
# step2: data
train_data = DogCat(opt.train_data_root,train=True)
val_data = DogCat(opt.train_data_root,train=False)
train_dataloader = DataLoader(train_data,opt.batch_size,
shuffle=True,num_workers=opt.num_workers)
val_dataloader = DataLoader(val_data,opt.batch_size,
shuffle=False,num_workers=opt.num_workers)
# step3: criterion and optimizer
criterion = t.nn.CrossEntropyLoss()
lr = opt.lr
optimizer = t.optim.Adam(model.parameters(),lr = lr,weight_decay = opt.weight_decay)
# step4: meters
loss_meter = meter.AverageValueMeter()
confusion_matrix = meter.ConfusionMeter(2)
previous_loss = 1e100
# train
for epoch in range(opt.max_epoch):
loss_meter.reset()
confusion_matrix.reset()
for ii,(data,label) in tqdm(enumerate(train_dataloader),total=len(train_data)):
# train model
input = Variable(data)
target = Variable(label)
if opt.use_gpu:
input = input.cuda()
target = target.cuda()
optimizer.zero_grad()
score = model(input)
loss = criterion(score,target)
loss.backward()
optimizer.step()
# meters update and visualize
loss_meter.add(loss.data[0])
confusion_matrix.add(score.data, target.data)
if ii%opt.print_freq==opt.print_freq-1:
vis.plot('loss', loss_meter.value()[0])
# 进入debug模式
if os.path.exists(opt.debug_file):
import ipdb;
ipdb.set_trace()
model.save()
# validate and visualize
val_cm,val_accuracy = val(model,val_dataloader)
vis.plot('val_accuracy',val_accuracy)
vis.log("epoch:{epoch},lr:{lr},loss:{loss},train_cm:{train_cm},val_cm:{val_cm}".format(
epoch = epoch,loss = loss_meter.value()[0],val_cm = str(val_cm.value()),train_cm=str(confusion_matrix.value()),lr=lr))
# update learning rate
if loss_meter.value()[0] > previous_loss:
lr = lr * opt.lr_decay
# 第二种降低学习率的方法:不会有moment等信息的丢失
for param_group in optimizer.param_groups:
param_group['lr'] = lr
previous_loss = loss_meter.value()[0]
def val(model,dataloader):
'''
计算模型在验证集上的准确率等信息
'''
model.eval()
confusion_matrix = meter.ConfusionMeter(2)
for ii, data in enumerate(dataloader):
input, label = data
val_input = Variable(input, volatile=True)
val_label = Variable(label.type(t.LongTensor), volatile=True)
if opt.use_gpu:
val_input = val_input.cuda()
val_label = val_label.cuda()
score = model(val_input)
confusion_matrix.add(score.data.squeeze(), label.type(t.LongTensor))
model.train()
cm_value = confusion_matrix.value()
accuracy = 100. * (cm_value[0][0] + cm_value[1][1]) / (cm_value.sum())
return confusion_matrix, accuracy
def help():
'''
打印帮助的信息: python file.py help
'''
print('''
usage : python file.py <function> [--args=value]
<function> := train | test | help
example:
python {0} train --env='env0701' --lr=0.01
python {0} test --dataset='path/to/dataset/root/'
python {0} help
avaiable args:'''.format(__file__))
from inspect import getsource
source = (getsource(opt.__class__))
print(source)
if __name__=='__main__':
import fire
fire.Fire()