forked from madrury/linalg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheigen.c
151 lines (120 loc) · 4.63 KB
/
eigen.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include <assert.h>
#include <stdlib.h>
#include "vector.h"
#include "matrix.h"
#include "eigen.h"
#include "linsolve.h"
struct eigen* eigen_new() {
struct eigen* e = malloc(sizeof(struct eigen));
return e;
}
void eigen_free(struct eigen* e) {
vector_free(e->eigenvalues);
// matrix_free(e->eigenvectors);
free(e);
}
/* Compute the eigenvalues and eigenvectors of a matrix M.
The eigenvalues are computed using the QR algorithm, then the eigenvectors
are computed by inverse iteration.
*/
struct eigen* eigen_solve(struct matrix* M, double tol, int max_iter) {
assert(M->n_row == M->n_col);
struct vector* eigenvalues = eigen_solve_eigenvalues(M, tol, max_iter);
struct matrix* eigenvectors = eigen_solve_eigenvectors(
M, eigenvalues, tol, max_iter);
struct eigen* e = eigen_new();
e->n = M->n_row;
e->eigenvalues = eigenvalues;
e->eigenvectors = eigenvectors;
return e;
}
/* Compute the eigenvalues of a matrix using the QR algorithm.
This is a renormalized version of power iteration that converges to a full
set of eigenvalues. Starting with the matrix M = M0, we iterate:
M0 = Q0 R0, M1 = R0 Q0;
M1 = Q1 R1, M2 = R1 Q1;
M2 = Q2 R2, M3 = R2 Q2;
...
For a general matrix with a full set of eigenvalues, this sequence will
converge to an upper diagonal matrix:
Mi -> upper diagonal matrix
The diagonal entries of this matrix are the eigenvalues of M.
*/
struct vector* eigen_solve_eigenvalues(struct matrix* M,
double tol,
int max_iter) {
assert(M->n_row == M->n_col);
struct matrix* X = matrix_copy(M);
int i = 0;
// QR algorithm iterations.
do {
struct qr_decomp* qr = matrix_qr_decomposition(X);
matrix_multiply_into(X, qr->r, qr->q);
qr_decomp_free(qr);
i++;
} while(!matrix_is_upper_triangular(X, tol) && (i < max_iter));
return matrix_diagonal(X);
}
/* Solve for the eigenvectors of a matrix M once the eigenvalues are known
using inverse iteration.
*/
struct matrix* eigen_solve_eigenvectors(struct matrix* M,
struct vector* eigenvalues,
double tol,
int max_iter) {
assert(eigenvalues->length = M->n_row);
assert(eigenvalues->length = M->n_col);
double eigenvalue;
int n_eigenvalues = M->n_col;
struct matrix* eigenvectors = matrix_new(n_eigenvalues, n_eigenvalues);
for(int i = 0; i < n_eigenvalues; i++) {
eigenvalue = VECTOR_IDX_INTO(eigenvalues, i);
struct vector* eigenvector = eigen_backsolve(M, eigenvalue, tol, max_iter);
matrix_copy_vector_into_column(eigenvectors, eigenvector, i);
vector_free(eigenvector);
}
return eigenvectors;
}
/* Solve for the eigenvector associated with an eigenvalue using the inverse
iteration algorithm.
Given an approximate eigenvalue lambda, the inverse iteration algorithm
computes the matrix:
M' = M - lambda I
And then solves the following sequence of linear equations:
v0 = solve(M', random_vector), v0' = normalize(v0);
v1 = solve(M', v0'), v1' = normalize(v1);
v2 = solve(<', v1'), v2' = normalize(v2);
...
This algorithm will converge to the eigenvector associated with the eigenvalue
closest to lambda.
*/
struct vector* eigen_backsolve(
struct matrix* M, double eigenvalue, double tol, int max_iter) {
struct vector* current = vector_constant(M->n_row, 1);
struct vector* previous;
// Preturb the eigenvalue a litle to prevent our right hand side matrix
// from becoming singular.
double lambda = eigenvalue + ((double) rand() / (double) RAND_MAX) * 0.000001;
struct matrix* M_minus_lambda_I = matrix_M_minus_lambda_I(M, lambda);
double i = 0;
do {
if(i > 0) {
vector_free(previous);
}
previous = current;
current = linsolve_qr(M_minus_lambda_I, previous);
// We reverse the sign of the vector if the first entry is not positive.
// Often the algorithm will oscilate between a vector and its negative
// after convergence.
if(VECTOR_IDX_INTO(current, 0) < 0) {
for(int j = 0; j < current->length; j++) {
VECTOR_IDX_INTO(current, j) = -VECTOR_IDX_INTO(current, j);
}
}
vector_normalize_into(current, current);
// vector_print(current);
i++;
} while(!vector_equal(current, previous, tol) && (i < max_iter));
vector_free(previous);
return current;
}