-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMagicSquare.py
133 lines (120 loc) · 5.38 KB
/
MagicSquare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-
"""
Magic Square class
"""
import numpy as np
class MagicSquare(object):
def __init__(self,n):
"""
Create Magic Square matrix with shape=(n,n),
where all elements are different and in range from 1 to n^2.
Elements are sorted in ascending order
Parameters:
-----
n: dimension of the square
"""
self.n = n
elements = range(1, n**2+1)
self.M = np.array(elements,dtype = np.int32).reshape((n,n))
def genRandSquare(self):
"""
Generates random Magic Square matrix.
"""
self.M = np.random.permutation(range(1,self.n**2+1)).reshape(self.n,self.n)
def getNumOfViolated(self):
"""
Gets the number of violated constraints. Constraints are:
Sum of elements along each row, each column, main diagonal
and non-main diagonal should be n*(n^2+1)/2
Returns:
-----
Integer that represents sum of violated constraints
"""
target_sum = self.n*(self.n**2 + 1)/2 #sum that should be satisfied
num_of_violated = 0
#check rows
rows_sum = np.sum(self.M, axis=1) # get sum for each row
num_of_violated += np.sum(rows_sum != target_sum)
#check columns
columns_sum = np.sum(self.M, axis=0) # get sum for each column
num_of_violated += np.sum(columns_sum != target_sum)
#check main diagonal
num_of_violated += (np.trace(self.M) != target_sum)
#check non-main diagonal
num_of_violated += (np.trace(np.flip(self.M,axis=0)) != target_sum)
return num_of_violated
def getSuccessors(self,mode,k=None):
"""
Get successors for the current state of the Magic Square.
Possible actions are flippings of the any 2 elements in the square.
Parameters:
-----
mode: string that indicates whether you want top k, or random k successors
("top" for top k, "random" for random k)
k: number of successors you want to get.If k is None get all successors (nC2),
they will be sorted in ascending order.
Returns:
-----
list of successors. In the "top" mode list is sorted, in the ascending
order, by the number of violated constraints.
"""
successors = []
if k == None: # return all successsors: nC2
k = int(self.n**2*(self.n**2-1)/2)
mode = 'top'
# if you want random k successors
if (mode == 'random'):
i = 0
while i < k:
# generate 4 radnom indicies for swapping
#x1,x2,y1,y2 = np.random.choice(range(self.n), size=4, replace=True)
x1,x2,y1,y2 = np.random.randint(low=0,high=self.n,size=4)
if (x1==x2) and (y1==y2):
continue
successor = self.getSuccessor(x1,y1,x2,y2)
exist = False
for s in successors: # check if this successor allready exists in the list
if np.array_equal(s.M,successor.M):
exist = True
if not exist:
successors.append(successor)
i += 1
# if you want top k successors
elif (mode == 'top'):
for x1 in range(self.n):
for y1 in range(self.n):
for x2 in range(x1,self.n):
for y2 in range(self.n):
if (x1 == x2) and (y2<=y1):
continue
successor = self.getSuccessor(x1,y1,x2,y2)
# place successor in final list, only if it is in top k
if not successors: # if there are no successors, append current
successors.append(successor)
else:
isPlaced = False # flags if you placed the successor in the list or not
for i in range(len(successors)): # place the successor on the right place in the list
if (successor.getNumOfViolated() < successors[i].getNumOfViolated()):
successors.insert(i,successor)
isPlaced = True
break
if (len(successors)>=k): # if there are more than k successors delete excess
successors = successors[:k]
else: # if there are no k successors in the list and you have not placed successor, add it to the list
if not isPlaced:
successors.append(successor)
else:
raise ValueError("The mode argument is wrong! Take a look in the decription.")
return successors
def getSuccessor(self,x1,y1,x2,y2):
successor = MagicSquare(self.n)
successor.M = self.M.copy()
# swap values
successor.M[x1,y1],successor.M[x2,y2] = successor.M[x2,y2],successor.M[x1,y1]
return successor
def printSquare(self):
"""
Prints out the Magic Square
"""
print("Square: ")
print(self.M)