forked from vsymbol/CUTIE
-
Notifications
You must be signed in to change notification settings - Fork 7
/
main_train_json.py
398 lines (346 loc) · 20.7 KB
/
main_train_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# written by Xiaohui Zhao
# 2018-12
import tensorflow as tf
import numpy as np
import argparse, os
import timeit
from pprint import pprint
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from data_loader_json import DataLoader
from utils import *
from model_cutie_aspp import CUTIERes as CUTIEv1
from model_cutie2_aspp import CUTIE2 as CUTIEv2
parser = argparse.ArgumentParser(description='CUTIE parameters')
# data
parser.add_argument('--use_cutie2', type=bool, default=False) # True to read image from doc_path
parser.add_argument('--doc_path', type=str, default='data/SROIE')
parser.add_argument('--save_prefix', type=str, default='SROIE', help='prefix for ckpt') # TBD: save log/models with prefix
parser.add_argument('--test_path', type=str, default='') # leave empty if no test data provided
# ckpt
parser.add_argument('--restore_ckpt', type=bool, default=False)
parser.add_argument('--restore_bertembedding_only', type=bool, default=False) # effective when restore_ckpt is True
parser.add_argument('--embedding_file', type=str, default='../graph/bert/multi_cased_L-12_H-768_A-12/bert_model.ckpt')
parser.add_argument('--ckpt_path', type=str, default='../graph/CUTIE/graph/')
parser.add_argument('--ckpt_file', type=str, default='meals/CUTIE_highresolution_8x_d20000c9(r80c80)_iter_40000.ckpt')
# dict
parser.add_argument('--load_dict', type=bool, default=True, help='True to work based on an existing dict')
parser.add_argument('--load_dict_from_path', type=str, default='dict/SROIE') # 40000 or 20000TC or table
parser.add_argument('--tokenize', type=bool, default=True) # tokenize input text
parser.add_argument('--text_case', type=bool, default=True) # case sensitive
parser.add_argument('--update_dict', type=bool, default=False)
parser.add_argument('--dict_path', type=str, default='dict/---') # not used if load_dict is True
# data manipulation
parser.add_argument('--segment_grid', type=bool, default=False) # segment grid into two parts if grid is larger than cols_target
parser.add_argument('--rows_segment', type=int, default=72)
parser.add_argument('--cols_segment', type=int, default=72)
parser.add_argument('--augment_strategy', type=int, default=1) # 1 for increasing grid shape size, 2 for gaussian around target shape
parser.add_argument('--positional_mapping_strategy', type=int, default=1)
parser.add_argument('--rows_target', type=int, default=64)
parser.add_argument('--cols_target', type=int, default=64)
parser.add_argument('--rows_ulimit', type=int, default=80) # used when data augmentation is true
parser.add_argument('--cols_ulimit', type=int, default=80)
parser.add_argument('--fill_bbox', type=bool, default=False) # fill bbox with dict_id / label_id
parser.add_argument('--data_augmentation_extra', type=bool, default=True) # randomly expand rows/cols
parser.add_argument('--data_augmentation_dropout', type=float, default=1)
parser.add_argument('--data_augmentation_extra_rows', type=int, default=16)
parser.add_argument('--data_augmentation_extra_cols', type=int, default=16)
# training
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--iterations', type=int, default=40000)
parser.add_argument('--lr_decay_step', type=int, default=13000)
parser.add_argument('--learning_rate', type=float, default=0.0001)
parser.add_argument('--lr_decay_factor', type=float, default=0.1)
# loss optimization
parser.add_argument('--hard_negative_ratio', type=int, help='the ratio between negative and positive losses', default=3)
parser.add_argument('--use_ghm', type=int, default=0) # 1 to use GHM, 0 to not use
parser.add_argument('--ghm_bins', type=int, default=30) # to be tuned
parser.add_argument('--ghm_momentum', type=int, default=0) # 0 / 0.75
# log
parser.add_argument('--log_path', type=str, default='../graph/CUTIE/log/')
parser.add_argument('--log_disp_step', type=int, default=200)
parser.add_argument('--log_save_step', type=int, default=200)
parser.add_argument('--validation_step', type=int, default=200)
parser.add_argument('--test_step', type=int, default=400)
parser.add_argument('--ckpt_save_step', type=int, default=1000)
# model
parser.add_argument('--embedding_size', type=int, default=128) # not used for bert embedding which has 768 as default
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--eps', type=float, default=1e-6)
# inference
#parser.add_argument('--c_threshold', type=float, default=0.5)
params = parser.parse_args()
edges = [float(x)/params.ghm_bins for x in range(params.ghm_bins+1)]
edges[-1] += params.eps
acc_sum = [0.0 for _ in range(params.ghm_bins)]
def calc_ghm_weights(logits, labels):
"""
calculate gradient harmonizing mechanism weights
"""
bins = params.ghm_bins
momentum = params.ghm_momentum
shape = logits.shape
logits_flat = logits.reshape([-1])
labels_flat = labels.reshape([-1])
arr = [0 for _ in range(len(labels_flat)*num_classes)]
for i,l in enumerate(labels_flat):
arr[i*num_classes + l] = 1
labels_flat = np.array(arr)
grad = abs(logits_flat - labels_flat) # equation for logits from the sigmoid activation
weights = np.ones(logits_flat.shape)
N = shape[0] * shape[1] * shape[2] * shape[3]
M = 0
for i in range(bins):
idxes = np.multiply(grad>=edges[i], grad<edges[i+1])
num_in_bin = np.sum(idxes)
if num_in_bin > 0:
acc_sum[i] = momentum * acc_sum[i] + (1-momentum) * num_in_bin
weights[np.where(idxes)] = N / acc_sum[i]
M += 1
if M > 0:
weights = weights / M
return weights.reshape(shape)
def save_ckpt(sess, path, save_prefix, data_loader, network, num_words, num_classes, iter):
ckpt_path = os.path.join(path, save_prefix)
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
filename = os.path.join(ckpt_path, network.name + '_d{:d}c{:d}(r{:d}c{:d})_iter_{:d}'.
format(num_words, num_classes, data_loader.rows_ulimit, data_loader.cols_ulimit, iter) + '.ckpt')
ckpt_saver.save(sess, filename)
print('\nCheckpoint saved to: {:s}\n'.format(filename))
if __name__ == '__main__':
pprint(params)
# data
data_loader = DataLoader(params, update_dict=params.update_dict, load_dictionary=params.load_dict, data_split=0.75)
num_words = max(20000, data_loader.num_words)
num_classes = data_loader.num_classes
for _ in range(2000):
a = data_loader.next_batch()
b = data_loader.fetch_validation_data()
# c = data_loader.fetch_test_data()
# model
if params.use_cutie2:
network = CUTIEv2(num_words, num_classes, params)
else:
network = CUTIEv1(num_words, num_classes, params)
model_loss, regularization_loss, total_loss, model_logits, model_output = network.build_loss()
# operators
global_step = tf.Variable(0, trainable=False)
lr = tf.Variable(params.learning_rate, trainable=False)
optimizer = tf.train.AdamOptimizer(lr)
tvars = tf.trainable_variables()
grads = tf.gradients(total_loss, tvars)
clipped_grads, norm = tf.clip_by_global_norm(grads, 10.0)
train_op = optimizer.apply_gradients(list(zip(clipped_grads, tvars)), global_step=global_step)
with tf.control_dependencies([train_op]):
train_dummy = tf.constant(0)
tf.contrib.training.add_gradients_summaries(zip(clipped_grads, tvars))
summary_op = tf.summary.merge_all()
# calculate the number of parameters
total_parameters = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
print(network.name, ': ', total_parameters/1000/1000, 'M parameters \n')
# training
loss_curve = []
training_recall, validation_recall, test_recall = [], [], []
training_acc_strict, validation_acc_strict, test_acc_strict = [], [], []
training_acc_soft, validation_acc_soft, test_acc_soft = [], [], []
ckpt_saver = tf.train.Saver(max_to_keep=200)
summary_path = os.path.join(params.log_path, params.save_prefix, network.name)
summary_writer = tf.summary.FileWriter(summary_path, tf.get_default_graph(), flush_secs=10)
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
iter_start = 0
# restore parameters
if params.restore_ckpt:
if params.restore_bertembedding_only:
if 'bert' not in network.name:
raise Exception('no bert embedding was designed in the built model, \
switch restore_bertembedding_only off or built a related model')
try:
load_variable = {"bert/embeddings/word_embeddings": network.embedding_table}
ckpt_saver = tf.train.Saver(load_variable, max_to_keep=50)
ckpt_path = params.embedding_file
ckpt = tf.train.get_checkpoint_state(ckpt_path)
print('Restoring from {}...'.format(ckpt_path))
ckpt_saver.restore(sess, ckpt_path)
print('Restored from {}'.format(ckpt_path))
except:
raise Exception('Check your path {:s}'.format(ckpt_path))
else:
try:
ckpt_path = os.path.join(params.ckpt_path, params.ckpt_file)
ckpt = tf.train.get_checkpoint_state(ckpt_path)
print('Restoring from {}...'.format(ckpt_path))
ckpt_saver.restore(sess, ckpt_path)
print('Restored from {}'.format(ckpt_path))
stem = os.path.splitext(os.path.basename(ckpt_path))[0]
#iter_start = int(stem.split('_')[-1]) - 1
sess.run(global_step.assign(iter_start))
except:
raise Exception('Check your pretrained {:s}'.format(ckpt_path))
# iterations
print(" Let's roll! ")
for iter in range(iter_start, params.iterations+1):
timer_start = timeit.default_timer()
# learning rate decay
if iter!=0 and iter%params.lr_decay_step==0:
sess.run(tf.assign(lr, lr.eval()*params.lr_decay_factor))
data = data_loader.next_batch()
feeds = [network.data_grid, network.gt_classes, network.data_image, network.ps_1d_indices, network.ghm_weights]
fetches = [model_loss, regularization_loss, total_loss, summary_op, train_dummy, model_logits, model_output]
h = sess.partial_run_setup(fetches, feeds)
# one step inference
feed_dict = {
network.data_grid: data['grid_table'],
network.gt_classes: data['gt_classes']
}
if params.use_cutie2:
feed_dict = {
network.data_grid: data['grid_table'],
network.gt_classes: data['gt_classes'],
network.data_image: data['data_image'],
network.ps_1d_indices: data['ps_1d_indices']
}
fetches = [model_logits, model_output]
(model_logit_val, model_output_val) = sess.partial_run(h, fetches, feed_dict)
# one step training
ghm_weights = np.ones(np.shape(model_logit_val))
if params.use_ghm:
ghm_weights = calc_ghm_weights(np.array(model_logit_val), np.array(data['gt_classes']))
feed_dict = {
network.ghm_weights: ghm_weights,
}
fetches = [model_loss, regularization_loss, total_loss, summary_op, train_dummy]
(model_loss_val, regularization_loss_val, total_loss_val, summary_str, _) =\
sess.partial_run(h, fetches=fetches, feed_dict=feed_dict)
# calculate training accuracy and display results
if iter%params.log_disp_step == 0:
timer_stop = timeit.default_timer()
print('\t >>time per step: %.2fs <<'%(timer_stop - timer_start))
recall, acc_strict, acc_soft, res = cal_accuracy(data_loader, np.array(data['grid_table']),
np.array(data['gt_classes']), model_output_val,
np.array(data['label_mapids']), np.array(data['bbox_mapids']))
loss_curve += [total_loss_val]
training_recall += [recall]
training_acc_strict += [acc_strict]
training_acc_soft += [acc_soft]
#print(res.decode())
print('\nIter: %d/%d, total loss: %.4f, model loss: %.4f, regularization loss: %.4f'%\
(iter, params.iterations, total_loss_val, model_loss_val, regularization_loss_val))
print('LOSS CURVE: ' + ' >'.join(['{:d}:{:.3f}'.
format(i*params.log_disp_step,w) for i,w in enumerate(loss_curve)]))
print('TRAINING ACC CURVE: ' + ' >'.join(['{:d}:{:.3f}'.
format(i*params.log_disp_step,w) for i,w in enumerate(training_acc_strict)]))
print('TRAINING ACC (Recall/Acc): %.3f / %.3f (%.3f) | highest %.3f / %.3f (%.3f)'\
%(recall, acc_strict, acc_soft, max(training_recall), max(training_acc_strict), max(training_acc_soft)))
# calculate validation accuracy and display results
if iter%params.validation_step == 0 and len(data_loader.validation_docs):
recalls, accs_strict, accs_soft = [], [], []
for _ in range(len(data_loader.validation_docs)):
data = data_loader.fetch_validation_data()
grid_tables = data['grid_table']
gt_classes = data['gt_classes']
feed_dict = {
network.data_grid: grid_tables,
}
if params.use_cutie2:
feed_dict = {
network.data_grid: grid_tables,
network.data_image: data['data_image'],
network.ps_1d_indices: data['ps_1d_indices']
}
fetches = [model_output]
[model_output_val] = sess.run(fetches=fetches, feed_dict=feed_dict)
recall, acc_strict, acc_soft, res = cal_accuracy(data_loader, np.array(grid_tables),
np.array(gt_classes), model_output_val,
np.array(data['label_mapids']), np.array(data['bbox_mapids']))
recalls += [recall]
accs_strict += [acc_strict]
accs_soft += [acc_soft]
recall = sum(recalls) / len(recalls)
acc_strict = sum(accs_strict) / len(accs_strict)
acc_soft = sum(accs_soft) / len(accs_soft)
validation_recall += [recall]
validation_acc_strict += [acc_strict]
validation_acc_soft += [acc_soft]
#print(res.decode()) # show res from the last execution of the while loop
print('VALIDATION ACC (STRICT) CURVE: ' + ' >'.join(['{:d}:{:.3f}'.
format(i*params.validation_step,w) for i,w in enumerate(validation_acc_strict)]))
print('VALIDATION ACC (SOFT) CURVE: ' + ' >'.join(['{:d}:{:.3f}'.
format(i*params.validation_step,w) for i,w in enumerate(validation_acc_soft)]))
print('TRAINING RECALL CURVE: ' + ' >'.join(['{:d}:{:.2f}'.
format(i*params.log_disp_step,w) for i,w in enumerate(training_recall)]))
print('VALIDATION RECALL CURVE: ' + ' >'.join(['{:d}:{:.2f}'.
format(i*params.validation_step,w) for i,w in enumerate(validation_recall)]))
idx = np.argmax(validation_acc_strict)
print('VALIDATION Statistic %d(%d) (Recall/Acc): %.3f / %.3f (%.3f) | highest %.3f / %.3f (%.3f) \n'
%(iter, idx*params.validation_step, recall, acc_strict, acc_soft,
validation_recall[idx], validation_acc_strict[idx], validation_acc_soft[idx]))
# save best performance checkpoint
if iter>=params.ckpt_save_step and validation_acc_strict[-1] > max(validation_acc_strict[:-1]+[0]):
# save as iter+1 to indicate best validation
save_ckpt(sess, params.ckpt_path, params.save_prefix, data_loader, network, num_words, num_classes, iter+1)
print('\nBest up-to-date performance validation checkpoint saved.\n')
# calculate validation accuracy and display results
if params.test_path!='' and iter%params.test_step == 0 and len(data_loader.test_docs):
recalls, accs_strict, accs_soft = [], [], []
while True:
data = data_loader.fetch_test_data()
if data == None:
break
grid_tables = data['grid_table']
gt_classes = data['gt_classes']
feed_dict = {
network.data_grid: grid_tables,
}
if params.use_cutie2:
feed_dict = {
network.data_grid: grid_tables,
network.data_image: data['data_image'],
network.ps_1d_indices: data['ps_1d_indices']
}
fetches = [model_output]
[model_output_val] = sess.run(fetches=fetches, feed_dict=feed_dict)
recall, acc_strict, acc_soft, res = cal_accuracy(data_loader, np.array(grid_tables),
np.array(gt_classes), model_output_val,
np.array(data['label_mapids']), np.array(data['bbox_mapids']))
recalls += [recall]
accs_strict += [acc_strict]
accs_soft += [acc_soft]
recall = sum(recalls) / len(recalls)
acc_strict = sum(accs_strict) / len(accs_strict)
acc_soft = sum(accs_soft) / len(accs_soft)
test_recall += [recall]
test_acc_strict += [acc_strict]
test_acc_soft += [acc_soft]
idx = np.argmax(test_acc_strict)
print('\n TEST ACC (Recall/Acc): %.3f / %.3f (%.3f) | highest %.3f / %.3f (%.3f) \n'
%(recall, acc_strict, acc_soft, test_recall[idx], test_acc_strict[idx], test_acc_soft[idx]))
print('TEST ACC (STRICT) CURVE: ' + ' >'.join(['{:d}:{:.3f}'.
format(i*params.test_step,w) for i,w in enumerate(test_acc_strict)]))
print('TEST ACC (SOFT) CURVE: ' + ' >'.join(['{:d}:{:.3f}'.
format(i*params.test_step,w) for i,w in enumerate(test_acc_soft)]))
print('TEST RECALL CURVE: ' + ' >'.join(['{:d}:{:.2f}'.
format(i*params.test_step,w) for i,w in enumerate(test_recall)]))
# save best performance checkpoint
if iter>=params.ckpt_save_step and test_acc_strict[-1] > max(test_acc_strict[:-1]+[0]):
# save as iter+1 to indicate best test
save_ckpt(sess, params.ckpt_path, params.save_prefix, data_loader, network, num_words, num_classes, iter+2)
print('\nBest up-to-date performance test checkpoint saved.\n')
# save checkpoints
if iter>=params.log_save_step and iter%params.ckpt_save_step == 0:
save_ckpt(sess, params.ckpt_path, params.save_prefix, data_loader, network, num_words, num_classes, iter)
# save logs
if iter>=params.log_save_step and iter%params.log_save_step == 0:
summary_writer.add_summary(summary_str, iter+1)
pprint(params)
pprint('Data rows/cols:{},{}'.format(data_loader.rows, data_loader.cols))
summary_writer.close()