-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathmain.py
69 lines (51 loc) · 3.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""main.py"""
import argparse
import numpy as np
import torch
from solver import Solver
from utils import str2bool
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def main(args):
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
net = Solver(args)
if args.train:
net.train()
else:
net.traverse()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='toy Beta-VAE')
parser.add_argument('--train', default=True, type=str2bool, help='train or traverse')
parser.add_argument('--seed', default=1, type=int, help='random seed')
parser.add_argument('--cuda', default=True, type=str2bool, help='enable cuda')
parser.add_argument('--max_iter', default=1e6, type=float, help='maximum training iteration')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--z_dim', default=10, type=int, help='dimension of the representation z')
parser.add_argument('--beta', default=4, type=float, help='beta parameter for KL-term in original beta-VAE')
parser.add_argument('--objective', default='H', type=str, help='beta-vae objective proposed in Higgins et al. or Burgess et al. H/B')
parser.add_argument('--model', default='H', type=str, help='model proposed in Higgins et al. or Burgess et al. H/B')
parser.add_argument('--gamma', default=1000, type=float, help='gamma parameter for KL-term in understanding beta-VAE')
parser.add_argument('--C_max', default=25, type=float, help='capacity parameter(C) of bottleneck channel')
parser.add_argument('--C_stop_iter', default=1e5, type=float, help='when to stop increasing the capacity')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--beta1', default=0.9, type=float, help='Adam optimizer beta1')
parser.add_argument('--beta2', default=0.999, type=float, help='Adam optimizer beta2')
parser.add_argument('--dset_dir', default='data', type=str, help='dataset directory')
parser.add_argument('--dataset', default='CelebA', type=str, help='dataset name')
parser.add_argument('--image_size', default=64, type=int, help='image size. now only (64,64) is supported')
parser.add_argument('--num_workers', default=2, type=int, help='dataloader num_workers')
parser.add_argument('--viz_on', default=True, type=str2bool, help='enable visdom visualization')
parser.add_argument('--viz_name', default='main', type=str, help='visdom env name')
parser.add_argument('--viz_port', default=8097, type=str, help='visdom port number')
parser.add_argument('--save_output', default=True, type=str2bool, help='save traverse images and gif')
parser.add_argument('--output_dir', default='outputs', type=str, help='output directory')
parser.add_argument('--gather_step', default=1000, type=int, help='numer of iterations after which data is gathered for visdom')
parser.add_argument('--display_step', default=10000, type=int, help='number of iterations after which loss data is printed and visdom is updated')
parser.add_argument('--save_step', default=10000, type=int, help='number of iterations after which a checkpoint is saved')
parser.add_argument('--ckpt_dir', default='checkpoints', type=str, help='checkpoint directory')
parser.add_argument('--ckpt_name', default='last', type=str, help='load previous checkpoint. insert checkpoint filename')
args = parser.parse_args()
main(args)